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Abstract
We analyse a simple model for growing tree networks and find that although it
never percolates, there is an anomalously large cluster at finite size. We study
the growth of both the maximal cluster and the cluster containing the original
vertex and find that they obey power laws. This property is also observed
through simulations in a nonlinear model with loops and a true percolating
phase.

PACS numbers: 64.60.Ak, 82.30.-b, 89.75.-k

1. Introduction

Recently there has been interest in the properties of random networks that are constructed by a
growing process. These networks appear to model certain observed systems rather better than
the random graphs of Erdős and Rényi [1]. Already, two reviews are available [2, 3].

At first, interest concentrated on the degree of distribution. It has been noticed that
networks such as the World Wide Web, the Internet backbone and scientific collaboration
graphs have (at least in some range) a power law degree distribution. This is in contrast to the
Poisson distribution found in random graphs. Barabási and Albert [4, 5] noticed that a power
law distribution could be obtained in a grown network with preferential attachment.

The grown nature of the network creates correlations that affect more than the degree
distribution. More recently, these other aspects of grown networks have been studied: in
particular, the phenomenon of percolation, that was of great interest in the study of random
graphs. Some grown models are devised to be fully connected and percolation cannot be
studied, but in a recent paper, Callaway et al [6] studied percolation in a very simple network
growth model. Their model introduces a new vertex at every time step, and also, with
probability δ, makes a link between two existing vertices, chosen at random. Percolation in this
model displays some interesting features that distinguish it from percolation in a corresponding
random graph with the same degree distribution. For example, the location and order of the
phase transition are modified by the correlations present in the grown model. A similar
treatment of other models has been performed by Dorogovtsev et al [7], who note that below
the percolation transition, the cluster size distribution has a power law dependence in contrast
to the exponential dependence typical in non-grown models.
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In this paper we pursue the investigation of percolation in grown networks concentrating
on models in which the new vertex introduced at each time step, is itself the endpoint of the link
possibly created in that time step. Models of this type were in fact the original kind proposed
by Barabási and Albert [4,5]. Only later did Dorogovtsev and Mendes [8] introduce the other
type of model in which vertex and link creation are decoupled, and which often happens to be
more convenient for calculation. In general there are families of such models in which more
than one link is added per time step. When two or more links are added there seems to be
little to distinguish the statistical features of the two families of models and they can be used
interchangeably. However, for the particular case of single-link addition, the models do have
a different character because in the case where the vertex is attached, only tree networks can
be created. For this reason we call this model, that forms the basis of study in this paper, the
‘tree growth model’.

Although most of the physical networks motivating the surge of interest in this subject
are not tree-like, other examples, such as food webs, would appear not to contain, or at least
to have a low probability of containing loops. However, a significant reason for studying a
tree growth network comes from past experience: tree graphs have provided a fruitful field for
investigating percolation in non-grown networks. They have been studied both in the physics
literature and through the mathematical field of branching processes. Tree models provide an
infinite-dimensional or mean field model that is often tractable in a way that finite-dimensional
models are not. We shall find that the tree growth model that forms the basis of this paper is
indeed a simple tractable model that illuminates more complicated scenarios.

The most interesting feature that we shall use this model to expose is the power law growth
of cluster size as the network size increases. In numerical work (and for the size of many prac-
tical networks) this feature, and the presence of what appear to be anomalously large clusters,
mask the lack of strict percolation in the tree growth model. This is because in random graphs,
cluster growth below the percolation threshold is only logarithmic. However, as was pointed
out by Dorogovtsev et al [7], the power law growth based on the underlying power law size
distribution, makes the whole phase have scaling characteristics typical of critical behaviour.

We study the properties of clusters in depth and besides investigating the distribution of
sizes of clusters chosen at random, we also study the size of the cluster containing the initial
point. This illuminates the intuition that there is a highly connected ‘old core’ that forms the
nucleus of the large clusters and turns out to give a useful analytic handle that is not so obvious
in nonlinear models with loops. To ensure that the phenomena we are studying are not an
artefact of the tree model we introduce a nonlinear extension and perform some numerical
simulations.

It is useful to contrast the properties of this grown tree model with a non-grown or static
analogue. In the present case, we argue that the appropriate analogue is a branching process
rather than a random graph. Callaway et al [6] in their paper on percolation, ascribe the cause
of the differences between percolation on grown networks and random graphs to correlations
between the degrees of vertices at each end of connecting links. We demonstrate that the tree
growth model does not have any such correlations.

The paper is organized as follows. After defining the tree growth model, the branching
process we use as a static analogue is introduced. The percolative and other properties of these
models are then compared. The main results on the tree growth model are contained in the
sections describing the growth of the maximal cluster and the cluster containing the origin.
A calculation of the vertex degree correlations in this model is the subject of section 4. The
final part of the paper concerns a nonlinear generalization of the tree growth model, which is
introduced and numerically simulated in order to confirm that the cluster growth properties
observed in the tree model are preserved in more complicated models with loops.
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2. Tree growth model

In each time step a new vertex is introduced. With probability δ, the new vertex is connected
to another vertex, chosen at random from amongst the existing vertices. The vertex remains
disconnected with probability 1 − δ. In numerical simulations we always start with a single
vertex at time t = 1, but we do not expect this initial condition to affect results at large times.
This model can be identified as them = 1 model A variant without preferential attachment, of
the scale free BA models discussed in [5]. It differs from the model considered by Callaway
et al since only the new vertex has an opportunity to make a link.

This model only generates clusters of tree graphs. There is only a single tree cluster for
the case δ = 1. These clusters are fragile in the sense that single deletions will always destroy
connectivity [2].

2.1. Degree distribution

We commence by investigating the distribution of the vertex degrees, that is, the number of
links attached to a given vertex. Following the notation and methods of Callaway et al, we
denote the expected number of vertices of degree k at time t by dk(t). Since the total number
of vertices at time t is precisely t , the probability of attaching a new link to an existing vertex
of degree k is dk/t , leading to the following evolution equations:

d0(t + 1) = d0(t)− δ
d0(t)

t
+ (1 − δ) (1)

d1(t + 1) = d1(t)− δ
d1(t)

t
+ δ
d0(t)

t
+ δ (2)

dk(t + 1) = dk(t)− δ
dk(t)

t
+ δ
dk−1(t)

t
k � 2. (3)

Note that the total number of vertices can be written as
∑∞

0 dk(t) = t and that the total expected
number of links is given by 1

2

∑∞
0 kdk(t) = δt . Since both quantities grow linearly in time we

search for solutions of the form, dk(t) = pkt , and find

p0 = 1 − δ

1 + δ
(4)

pk = 2

1 + δ

(
δ

1 + δ

)k
k � 1. (5)

This distribution decays exponentially in contrast to random graph models which have a Poisson
degree distribution, and the scale free models with power law distribution. As was demonstrated
in [5], this type of decay is characteristic of models in which linking is not preferential.

2.2. Static analogue—branching process

Before proceeding to investigate clustering issues we pause to introduce a non-grown or static
analogue of this model. The static model should have the same vertex degree distribution as
the grown model, but should be constructed to avoid any correlation between the degree of
linked vertices that might arise from the growing process. Furthermore, the analogue should
preserve the tree-like character of the model, so it cannot be one of the classic random graphs
of Erdős and Rényi [1]. An appropriate model is based on an ensemble of Galton and Watson
branching processes [11, 12].

A branching process may be regarded as a growth process in its own right, but each vertex
is treated identically, thus avoiding any potential correlation between vertex degrees. In order
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to reproduce the vertex degree distribution, we choose the probability of k offspring to be
proportional to pk+1 in equations (4), (5), so

pk = 1

1 + δ

(
δ

1 + δ

)k
k � 0. (6)

This choice gives the correct ratios of vertex degrees at all higher levels. However, at the
first level, where no link is already present, it is not obvious that the choice correctly weights
the vertices with no children at all. We return to this issue when we discuss the ensemble of
branching processes.

The properties of the model are then a textbook exercise [11], but for completeness we
summarize the main steps. The main concern is the with the cluster sizes, in particular the
question of percolation. This approach based on branching processes is identical to the studies
of percolation on trees, for example Bethe lattices, which were popular in the 1980s [10] and
provided a mean field model for the percolation transition.

Percolation occurs in this model when the extinction probability of the branching process
is less than unity. This extinction probability may be calculated using the generating function
for the probabilities (6):

g(x) =
∞∑
0

pkx
k = 1

1 + δ − δx
. (7)

The extinction probability is given by the smallest root, x0, of the equation: g(x) = x. This
root is 1 for all values of δ so percolation never takes place (though, in the same way as for
one-dimensional percolation, δ = 1 may be regarded as a critical point).

The technique above can be extended to find the distribution ni , of finite clusters in this
model. For a single branching process, the generating function, ρ(x) = ∑∞

1 nBi x
i , for the

quantities nBi , which are the probabilities that the process contains i nodes, is given by the
solution to, ρ(x) = xg(ρ(x)), and is found to be

ρ(x) = (1 + δ)

2δ
− 1

2δ

√
(1 + δ)2 − 4δx. (8)

The quantities nBi may now be read off, however these are not the cluster numbers ni , as usually
defined. The static model is an ensemble of branching processes, so nBi corresponds to the
number of clusters of size i per process, but ni is the number per node. To relate these quantities
we compute the average number of nodes in a branching process as ρ ′(1) = 1/(1 − δ). In the
limit of a large ensemble we then find ni = (1 − δ)nBi . A proper discussion of the ensemble
would allow a number of isolated nodes besides the clusters based on branching processes, in
order to adjust the degree distribution. This more careful discussion leads to the same result:

n1 = 1 − δ

1 + δ
(9)

n2 = δ(1 − δ)

(1 + δ)3
(10)

n3 = 2δ2(1 − δ)

(1 + δ)5
. (11)

A recursion relation may be obtained for higher order terms. These results are used for
comparison with the tree growth model.

2.3. Cluster size distribution

The expected number of clusters of size i, Ni , in the tree growth model obey a set of evolution
equations that can be obtained by noting that the probability of making a link to a cluster of i
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Figure 1. The fraction of vertices in clusters of size 1, 2, 3 (n1, n2, n3) according to the formulae
(14), (15) and also the static results (9)–(11). These predictions coincide for clusters of size 1.
Simulation results lie on the exact curve but are not shown in this plot.

vertices is iNi/t . In contrast to the situation in more complicated models, these equations are
linear, exact and hold for finite t :

N1(t + 1) = N1(t)− δ
N1(t)

t
+ (1 − δ) (12)

Ni(t + 1) = Ni(t)− δ
iNi(t)

t
+ δ
(i − 1)Ni−1(t)

t
. (13)

The expected total number of clusters
∑∞

1 Ni(t) grows linearly in time and is given by (1−δ)t ,
since a new cluster is created whenever a link is not made in a time step. By summing the
equations (weighted by i), we also find that the first moment is given by the total number of
vertices,

∑∞
1 iNi(t) = t . These relations also reflect the fact that each cluster is a tree graph,

so the number of links is the number of vertices minus one. We search for the cluster size
distribution, ni , of the form, Ni(t) = nit and find the following recursion relations:

n1 = 1 − δ

1 + δ
(14)

ni = (i − 1)δ

(iδ + 1)
ni−1 i � 2. (15)

Although the first term, n1, is (by design) the same as for the static model, later terms are
different. Figure 1 shows the first few terms of the cluster size distribution for both the static
model and the growth model. Notice that while the exact result is similar to the static one for
small delta, it is smaller for larger delta.

Indeed, the large cluster behaviour of the static and the growth model are completely
different. The large cluster behaviour of (15) is power law:

ni
i→∞−→ n1�(2 + 1/δ)i−(1+1/δ). (16)

That of the branching model is dominated by exponential decay.
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The power law decay of the cluster distribution for the growing model has been noticed
by Dorogovtsev et al [7] in the non-percolating phase of nonlinear growth models. They have
termed it a self-organized critical state because the preferential attachment to larger clusters
which causes the power law decay occurs automatically. For non-grown networks, exponential
decay of the cluster numbers is a common feature (as in the static example). This difference
has consequences for the way clusters grow.

3. The largest cluster

Direct numerical simulations of the growing network indicate that for values of δ larger than
about 1/2, there is a cluster of size considerably larger than the others. This cluster often
contains the original vertex and suggests that there may be a percolating cluster based on the
‘old core’ of vertices that are created early in the growth. These numerical simulations are in
fact misleading, but expose anomalous finite size effects that are studied below.

An analytic approach to percolation does not take the usual route because the equations
(12), (13) are exact and hold for any incipient percolating cluster besides the finite clusters.
Ordinarily, the sum,

∑∞
1 ini only accounts for finite clusters and the infinite cluster must be

added separately. However, according to the equations, this sum equals t and contains all the
vertices, thereby leaving no room for an infinite cluster. The generating function approach
used in [6], although pleasantly tractable, merely reproduces this information.

Percolation does not occur in this model, except in the trivial limiting case δ = 1 where
the network just consists of a single tree graph. This phase diagram resembles that of ordinary
one-dimensional percolation. To understand the reasons why percolation does not take place,
yet large clusters do appear at finite size, it is helpful to study the numerical data for the
maximum sized cluster. This will then lead us to an investigation of the cluster containing the
original site.

3.1. Numerical study

On closer inspection of the numerical data it is found that the fraction of sites contained in
the largest cluster suffers from an anomalously slow finite size effect, becoming smaller as
the growth process is continued to larger times. For example, at δ = 0.8, the fraction drops
from about 0.29 at t = 103, to 0.17 for a network ten times larger. In figure 2 we show the
largest cluster fraction against log(t) for various δ. The straight lines clearly indicate a power
law dependence. The exponent can be determined by fitting, or by noticing that another plot
of the same quantity (log) against δ displays linear dependence. In any event, the lack of any
transition is clear. The fit suggests the form

Fraction of vertices in largest cluster ∼ t δ−1. (17)

This form of scaling behaviour can be deduced from the original growth model. Consider a
large isolated cluster, Nī = 1. By treating its size, ī, as a continuous variable, we find that it
grows according to the probability that a link will attach the new vertex to this cluster:

ī(t + 1) = ī(t) + δ
ī

t
. (18)

There is no solution linear in t , but a form ī ∼ t δ solves the equation in the large-time limit.
The fraction of sites in this largest cluster, ī/t , therefore follows the scaling behaviour observed
numerically in (17). As the system grows very large, the relative size of even the largest cluster
decreases and it is apparent that the tree growth model never experiences true percolation.
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Figure 2. Scaling of largest cluster size fraction against t for δ = 0.1, 0.5, 0.8.

In most static models with percolation, for example random graph models, the finite size
scaling of the maximum cluster size is given by log(t). This is related to the usual exponential
decay of the cluster size distribution, and the power law behaviour we see here follows from
the distinctive decay (16) in growth models.

3.2. Cluster containing the initial point

The overall distribution of the sizes of randomly chosen clusters (14), (15) does not give any hint
of the presence of the large cluster seen in the numerical work above. It is hard to investigate the
maximal cluster analytically, but if we rely on the observation that the maximal cluster is likely
to be based on one of the oldest vertices, we may approach the problem from a different perspec-
tive. The distribution of the size of clusters that contain the original point is amenable to analytic
methods and does shed some light on the presence of a large cluster. The possibility of studying
this quantity is of course only available in grown networks that have distinguished vertices.

As before, we start by writing evolution equations, this time for the probability Pi(t) that
a distinguished cluster has size i at time t (1 � i � t):

P1(t + 1) = P1(t)− δ
P1(t)

t
(19)

Pi(t + 1) = Pi(t)− δ
iPi(t)

t
+ δ
(i − 1)Pi−1(t)

t
(20)

Pt+1(t + 1) = δPt (t). (21)

These equations are very similar to the ones for the overall cluster size distribution Ni(t)
in (12), (13), however, the difference in the first equation prevents any solution Pi(t) ∝ t . The
equations actually hold for any distinguished cluster, with the initial condition determining
which cluster is selected. Simplest is to choose the cluster distinguished as containing
the original point, in which case P1(1) = 1. Other possibilities, for example the cluster
containing the second point would be determined by the values at t = 2, P1(2) = 1 − δ and
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Figure 3. Size distribution of the cluster containing the origin with a scaling plot of tδPk(t) against
t−δk. For a variety of values of δ. The curves are obtained by numerically solving the equations
(19)–(21) up to t = 104.

P2(2) = δ. This in fact leads to the same distribution as for the first point, but a difference
is obtained for the third point which is specified by P1(3) = 1 − δ, P2(3) = δ(1 − δ)

and P3(3) = δ2. In the following, we shall only consider the cluster containing the
original point.

The sum
∑t

1 Pk(t) is preserved by these equations, and can be set to 1, as expected
for a probability, by the initial condition. The average size of the distinguished cluster,
k̄(t) = ∑t

1 kPk(t), obeys k̄(t + 1) = (1 + δ/t)k̄(t). So at large times we expect that k̄(t) ∼ t δ .
This is essentially the same argument as in (18) of the last section and indeed the evolution
equation has the same intuitive origin. In this form the prefactor can be determined from the
initial condition. Equations for all the higher moments of the distribution will be considered
below.

For large t and k, the continuum version of the evolution equation becomes

t
∂P

∂t
= −δ ∂(kP )

∂k
(22)

which has a scaling solution,

P(t, k) = t−δf (kt−δ) (23)

where f (u) is any function.
This result is confirmed, and the form of the scaling function f (u) determined, by

numerically solving the difference equations (19)–(21) and plotting them appropriately as
shown in figure 3. No change in the form of the function is visible as t is increased beyond
about 2000. A scaling relation of this form is interesting because it is found for all values of δ
not just those in the vicinity of the critical point at δ = 1.

The scaled cluster distribution shows a clear change in form around δ = 1/2. Although
the mean of the distribution varies smoothly with δ, and is close to 1 on the scaled plot
(corresponding to k̄(t) = t δ before scaling), the mode moves away from zero (cluster size,
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k = 1, before rescaling) as δ becomes greater than about 1/2. Eventually, as δ → 1 the scaling
function becomes progressively more peaked around u = 1. This provides an argument for
the likely presence of a large maximal cluster for δ � 1/2.

The form of the scaling function is not easy to determine analytically. Only in the limit
of large or small u, can f (u) be determined using the solutions for P1(t) and Pt(t) obtained
from (19) and (21).

For comparison with simulations it is better to compare the moments of the distribution
rather than the full form. The moments, defined as,

Sn(t) =
t∑
1

knPk(t) (24)

obey equations obtained from weighted sums of (19)–(21):

S0(t + 1) = S0(t) (25)

S1(t + 1) =
(

1 +
δ

t

)
S1(t) (26)

S2(t + 1) =
(

1 +
2δ

t

)
S2(t) +

δ

t
S1(t) (27)

Sn(t + 1) = Sn(t) +
δ

t

n∑
1

(
n

i − 1

)
Si(t) (28)

where the last equation contains a binomial coefficient. By forming suitable linear
combinations, these equations can be solved in terms of the following function:

R(z, t) =
t−1∏
i=1

(1 + z/i) = �(z + t)

�(t)�(z + 1)
(29)

t→∞−→ t z

�(z + 1)
. (30)

For example

S0(t) = R(0, t) = 1 (31)

S1(t) = R(δ, t) (32)

S2(t) = 2R(2δ, t)− R(δ, t) (33)

S3(t) = 6R(3δ, t)− 6R(2δ, t) + R(δ, t). (34)

Higher terms can be computed iteratively, and it is also possible to treat clusters containing
other than the original point. As t becomes large,R(nδ, t) ∼ tnδ , so the leading term dominates
and Sn(t) → n!R(nδ, t). However, for finite t , the sub-leading terms are large in the region
δ � 1/ log(t) and must be kept in numerical work.

In figure 4 we show comparisons of these formulae against simulation results for the mean
and the second moment. Bearing in mind the scaling behaviour, we plot each moment divided
by a power of t δ . These first moments show excellent agreement.

4. Vertex degree correlations

To conclude our study of the tree growth model we follow the same argument used by Callaway
et al to determine the correlations between the vertex degree at each end of a randomly chosen
link. Such correlations were studied in preferential attachment models in [13]. The number
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of edges that join vertices of degrees j and k is denoted Ejk . This matrix is symmetric. For
links that join vertices of the same degree, Ekk is defined to be twice the number of such links.
In this case exact evolution equations can be derived by treating the vertices with a single link
specially:

E11(t + 1) = E11(t) + 2δ
d0

t
− 2δp1

E11

d1
(35)

E1k(t + 1) = E1k(t) + δ
dk−1

t
− δ

(
p1
E1k

d1
+ pk

E1k

dk

)
(36)

Ejk(t + 1) = Ejk(t) + δ

(
pk−1

Ejk−1

dk−1
+ pj−1

Ej−1k

dj−1

)

− δ

(
pj
Ejk

dj
+ pk

Ejk

dk

)
(37)

where dk(t) and pk are the vertex degree numbers and their probabilities as determined earlier
in section 2.

The total expected number of links is given by 1
2

∑
jk Ejk(t) and the evolution equations

show that it is given by δt as anticipated. We therefore write the probabilities as Ejk(t) =
2δtejk , and derive the following equations:

(1 + 2δ)e11 = p0 (38)

(1 + 2δ)e1k = pk−1

2
+ δ e1k−1 (39)

(1 + 2δ)ejk = δ(ejk−1 + ej−1k). (40)
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By appropriately multiplying these equations and adding, we can find the following
relations between the moments:

M0 =
∑
jk

ejk = 1 (41)

M1 =
∑
jk

jejk = 1 + δ + 1
2

∑
j=0

jpj (42)

M2 =
∑
jk

jkejk = 1 + 2δM1 +
∑
j=0

jpj . (43)

Using the results of section 2 on the vertex degrees, we find the average degree
∑∞

0 kpk =
k̄ = 2δ. The sum above includes vertices with no links, and the average degree on the end of
a randomly chosen link is µ = ∑

k2pk/
∑
kpk = 1 + 2δ.

The covariance between vertex degrees at each end of a randomly chosen link is defined as,

C =
∑
jk

(j − µ)(k − µ)ejk (44)

= M2 − 2µM1 + µ2M0. (45)

Combining these results we find that C vanishes identically and that there is no correlation
between the degrees at the end of randomly chosen links in this model. This result is supported
by simulations.

In view of this result, it is slightly surprising that the analogue static model which was
specifically designed to avoid these correlations, is not identical to the tree graph model. There
is still a distinction as was apparent from the cluster numbers.

5. Two-link growth model

The preceding study of cluster growth in the tree growth network has been reasonably tractable,
fundamentally due to the tree property of the network. The question arises as to which features
are preserved in more general models.

The most obvious difference in more complicated models is the presence of a percolating
phase. The tree growth model has no percolating phase except the trivial one at δ = 1. The
physical reason for this deficiency is not directly the tree nature of the network. The cause
should rather be sought in the growth itself. There is no mechanism to attach existing clusters
to each other. A mechanism of this type was responsible for the percolating properties in the
model of Callaway et al, and clearly introduces nonlinearities into the model, for example in
the equation for the generating function of cluster sizes.

A natural extension of our tree growth model is a model in which at each time step a new
vertex is created and then, with probability δ connected by two links to the existing vertices.
Each new link is assigned a random terminating vertex amongst the existing vertices. The
networks grown by this model are not necessarily tree-like and loops can form. The static
analogue is therefore a random graph rather than a branching process. Again, in numerical
work, we use an initial condition consisting of a single vertex. This model can be identified
as the m = 2 model A variant without preferential attachment, of the scale free BA models
discussed in [5]. A further generalization that we have considered is a model in which there is
are fixed probabilities for single- and double-link connections. This leads to a more complicated
phase diagram, but not to any significantly new observations. Yet another approach would
be to consider cluster growth in a model with a fixed number of vertices. Such models of
aggregation were considered by Smoluchowski and applied to polymerization of ARBf−1
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branched molecules by Stockmayer [14] and others. The gelation transition found in these
models corresponds to percolation.

Below, we present the basic properties of the two-link model closely following the methods
of Callaway et al. We then perform simulations to study the cluster properties and compare
them with what was found in the tree model.

5.1. Two-link growth model—degree distribution

The equations leading to the degree distribution that are obtained by the same means as for the
tree growth model:

d0(t + 1) = d0(t)− 2δ
d0(t)

t
+ (1 − δ) (46)

d1(t + 1) = d1(t)− 2δ
d1(t)

t
+ 2δ

d0(t)

t
(47)

d2(t + 1) = d2(t)− 2δ
d2(t)

t
+ 2δ

d1(t)

t
+ δ (48)

dk(t + 1) = dk(t)− 2δ
dk(t)

t
+ 2δ

dk−1(t)

t
. (49)

Note that the total number of vertices, t , can be written as
∑∞

0 dk(t) and that the expected
number of links, 2δt , is given by 1

2

∑∞
0 kdk(t). Searching for solutions of the form,

dk(t) = pkt , we find

p0 = 1 − δ

1 + 2δ
(50)

p1 = 2δ(1 − δ)

(1 + 2δ)2
(51)

pk = (1 + 8δ)
2k−2δk−1

(1 + 2δ)k+1
(for k � 2). (52)

Again this distribution decays exponentially after the first couple of terms.

5.2. Two-link growth model—cluster size distribution

The cluster sizes Ni in the two-link growth model obey a set of evolution equations which
are now approximate and only valid for finite clusters at large t since processes in which both
links end in the same cluster are ignored. This is the same approximation that is made in the
Callaway et al analysis:

N1(t + 1) = N1(t)− 2δ
N1(t)

t
+ (1 − δ) (53)

N2(t + 1) = N2(t)− 2δ
2N2(t)

t
(54)

Ni(t + 1) = Ni(t)− 2δ
iNi(t)

t

+ δ
i−2∑
j=1

jNj (t)

t

(i − j − 1)Ni−j−1(t)

t
. (55)
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Figure 5. The fraction of the vertices contained within finite clusters. Obtained by numerical
integration of the differential equation (59) using a step size of 10−6.

Solutions of the form Ni(t) = nit are considered and a recursion relation obtained:

n1 = δ

1 + 2δ
(56)

n2 = 0 (57)

ni = δ

1 + 2iδ

i−2∑
j=1

jnj (i − j − 1)ni−j−1. (58)

Analysis of these cluster numbers is best carried out using the generating function for the
cluster sizes, g(x) = ∑∞

1 inix
i , which obeys a nonlinear equation

g′ = 1

2δ

(
1 − δ − g/x + δg2

1 − xg

)
. (59)

5.3. Two-link growth model—percolation

We compute g(1) by numerically integrating the equation (59) starting from an initial condition
(g(ε) = n1ε). Figure 5 shows the results, and we recall that g(1) is the expected fraction of
vertices contained in the finite clusters, so when it differs from 1, percolation occurs.

The model percolates for most of the range of δ, but for a range of small δ there is no
percolation. It is possible to obtain the critical value δc by studying g′(1). In the percolating
region g(1) < 1, so it is simple to take the x → 1 limit of the right-hand side of equation (59)
to obtain,

g′(1) = 1

2δ
(1 − δ(1 + g(1))) . (60)

In the case δ < δc, g(1) = 1, and this limit must be taken more carefully with the help of
L’Hopital’s rule. The resulting quadratic equation can be solved to give

g′(1) = 1 − 4δ ± √
1 − 16δ + 16δ2

4δ
. (61)
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Figure 6. Maximal and original cluster fractions in the two-link model for two values of δ, (0.1, 0.2)
within the percolating region. In each case the maximal curve is above the original one. Averages
are taken over a large number of samples ranging from 102 for the largest networks to 105 at the
smallest.
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Figure 7. Scaling of maximal cluster in the two-link model below the percolation threshold. The
original cluster follows similar curves. For δ = 0.01, 0.03, 0.05. Averages are taken over a large
number of samples ranging from 50 for the largest networks to 104 for the smallest.

We omit regions where the root is not real, and further require that it be positive. Finally,
recognizing that g′(1) → 1 as δ → 0 since in this limit all clusters have size one, we are able
to pick the negative sign as being the only correct branch.
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In summary δc = 1/2 − √
3/4 ≈ 0.066 99. With g′(1) taking different values on each

side:

g′(1) =




1 − 4δ − √
1 − 16δ + 16δ2

4δ
for δ < δc

1

2δ
(1 − δ(1 + g(1))) for δ > δc.

(62)

The critical behaviour we have described is very similar to that observed in the model studied
by Callaway et al. By performing a similar investigation near the critical point, we find the
same signals of an infinite order transition with 1 − g′(1) ∼ eα/

√
δ−δc .

6. Cluster growth in the two-link growth model

In this section we describe the results of numerical simulations to find how large clusters grow
in this model. We track both the maximal cluster and the cluster containing the original vertex.

In the region above the percolation threshold the maximal cluster naturally grows with t .
It is interesting to see how finite size affects influence this and how the cluster containing the
original point grows. This is shown in figure 6 which indicates that there is a region where
the original cluster is smaller than the maximal one, but as the size of the network increases,
this cluster approaches the size of the maximal one. This result supports the intuition that
the ‘old core’ of vertices act as a seed for the percolating cluster. Indeed, the probability
that the maximal cluster contains the original vertex appears to grow to 1 for any δ in the
percolating phase. Unfortunately the statistics for this analysis are not good for the sizes we
have considered and this result should only be taken as suggestive.

The finite size effects are most apparent for δ = 0.1 which is quite close to the critical
point. In this case the fraction of sites in the either maximal or original cluster decrease with
t in a way reminiscent of the behaviour in the tree growth model. Estimates of a correlation
size can be made on the basis of logarithmic plots which show a clear change in slope as the
network size exceeds the correlation size at that value of δ.

It is the situation below the percolation threshold that holds more interest for comparison
with the tree growth model. In figure 7 we show evidence that the maximal cluster scales with
a power law decay in this region. The original cluster behaves in the same way. This is exactly
as in the tree growth model, and as emphasized before, quite distinct from the log(t) behaviour
in random graph models.

Having demonstrated that scaling occurs in the same way as in the tree growth model, we
postpone any further study of the exponent of the growth. This is because of the difficulty of
getting far from the critical point in this particular model.

7. Conclusion

The study of grown networks was originally motivated by real networks which are by nature
finite. We have shown in a simple tree growth model, that although an infinite size system
does not display percolation, finite systems of sizes that may have relevance to observations,
often contain large clusters. These clusters grow with a power law dependence on the system
size and provide another manifestation of the critical nature of the whole phase. The power
law growth can be analysed carefully in this model, especially by studying clusters with
distinguished points, but the pattern of power law growth appears to be general as found in
numerical simulations in a nonlinear model.
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